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Abstract
Mathematical concepts such as monads, functors, monoids,

and semigroups are expressed in Haskell as typeclasses.

Therefore, in order to exploit relations such as “every monad

is a functor”, and “every monoid is a semigroup”, we need to

be able to also express relations between typeclasses.

Currently, the only way to do so is using superclasses.
However, superclasses can be problematic due to their closed

nature. Adding a superclass implies modifying the subclass’

definition, which is either impossible if one does not own

such code, or painful as it requires cascading changes and

the introduction of boilerplate throughout the codebase.

In this article, we introduce class morphisms, a way to

relate classes in an open fashion, without changing class def-

initions. We show how class morphisms improve the expres-

sivity, conciseness, and maintainability of code. Further, we

show how to implement them while maintaining canonicity

and coherence, two key properties of the Haskell type system.

Extending a typechecker with class morphisms amounts to

adding an elaboration phase and is an unintrusive change.

We back this claim with a prototype extension of GHC.

1 Introduction
Typeclasses infuse Haskell with a mathematical flavour. Con-

cepts such as monads, functors, and total and partial orders

can all be modelled in programs along with specific instances

of them. Usually, some classes within a given program are

related. For instance, every monad is a functor, and every

total order is also a partial order. Expressing these relations

within the type system allows programmers to reuse code

written for general concepts (functors, partial orders) over

the more specific ones (monads, total orders).

The way of expressing these relations in Haskell is via

superclasses. Suppose we have classes C and S and we want

to express that every instance of C is also an instance of S.
We can, at the point of definition of a class C, declare S as

a superclass. This means that every C-instance declaration
must have a corresponding S-instance. In return, functions

that expect a type in S can be used over any type in C,
allowing for more code reuse.

However, using superclasses to represent these implica-

tion relations between classes has several drawbacks (see §2)

due to their closed nature:

• Adding a superclass to an existing class implies modi-

fying the latter’s definition. However, it might not be

practical or even possible to change it (for instance,

if it belongs to a third-party library or the language’s

standard library).

• When the programmer does modify the class defini-

tion, existing code may (and often does) break because

of missing instances of the new superclass.

• These problems are recurrent, as programmers wish to

modelmore relations. However, anticipating all needed

superclasses is hardly ever possible.

• When using superclasses for this purpose, the instances

of the superclass are generically definable from in-
stances of the subclass. (For example, a functor instance

is easily defined from just the bind and return meth-

ods of a monad, independently of the particular monad

involved.) Writing these generic instances by hand is

then clearly boilerplate.

These limitations are not hypothetical: the need to relate

classes is bound to appear in any long-living project. Re-

cently, GHC [The Glasgow Haskell Team 2018] has been

such an example. Seeking to model the mathematical rela-

tion between monads, applicative functors, and functors, the

Functor-Applicative-Monad proposal [Haskell Wiki 2014] was

put forward. Following this proposal, the class system was

modified to make Functor a superclass of Applicative, and
Applicative a superclass of Monad. However, all the prob-
lems mentioned above surfaced:

• The proposal required to change the standard prelude,

thus deviating from the language definition.

• A significant amount of code stopped compiling be-

cause of missing instances.

• Other classes, such as pointed functors, were left out

of the hierarchy.

• Most programmers writing aMonad instance use boil-

erplate definitions for Applicative and Functor.

In this paper, motivated by such issues, we describe class
morphisms, a way of introducing class relations in an open

fashion, independently of class definitions (§3). We show

how the problems stated above are avoided by the use of

morphisms, and how they allow for a smoother evolution of

software. By internalising these relations, class morphisms

bring the typeclass system closer to our mathematical view
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of it: relations between typeclasses can be incrementally

added without changing what each typeclass is.
We have formalised class morphisms by extending Jones’s

[1995] theory of qualified types and proved that any program

with class morphisms can be elaborated to a well-typed pro-

gram without them (§4). This shows that class morphisms

preserve canonicity: the key property that there is atmost one

instance for each type and class. Further, class morphisms

also preserve coherence, which is essentially the property

that a well-typed program’s behaviour is determined by its

text, and not by how it was typechecked.

We have also developed a prototype implementation of

class morphisms in GHC, which we describe in §5. It can be

downloaded from http://github.com/cifasis/ghc-cm.

The brittleness of typeclass hierarchies is a well-known

problem, and there have been several proposed solutions.

We compare them with ours in §6.

2 The Problem with Superclasses
Superclasses, present ever since the origins of typeclasses,

organise classes into a hierarchy that allows for reuse of

instances and member function names [Wadler and Blott

1989]. For example, a class for groups may haveMonoid as

a superclass and only declare an operation for inverses. In

this way, the names for the associative operation mappend
and the unit mempty from the Monoid class are reused. Ad-

ditionally, when declaring a group instance there is no need

to declare the unit and associative operations for types with

an existing monoid instance.

Another use of superclasses is to increase polymorphism,

as they allow the typechecker to conclude some implica-

tions between constraints. For example, given the following

standard classes:

class Eq a where

(≡) :: a → a → Bool

data Ordering = LT | EQ | GT
class Eq ⇒ Ord a where

compare :: a → a → Ordering

we can conclude Eq τ from Ord τ , regardless of the shape
of τ or the instances in scope. Operationally, this amounts

to including a dictionary for Eq τ inside the dictionaries for

Ord τ , which can then be projected and used. To ensure such

dictionaries exist, an Ord τ instance can only be accepted if

there is also an Eq τ instance, or a more general one.

While adding new instances and classes works extremely

well, adding a superclass to an existing class is often a break-

ing change. Let us explore the reasons behind this.

Let C be an existing class, and suppose we want to add S
as a superclass of C. To start with, we need to modify C’s
definition, which might be impractical if C is part of the lan-

guage standard or belongs to a third-party library. However,

let us imagine that we indeed do so. Now, C instances are

only valid if they have a corresponding S instance; a new re-

quirement. Thus, existing C instances will be rejected unless

they happen to have a matching S instance. To fix this, the

programmer must add S instances across the codebase—a

task of considerable effort. If C is part of a library, then fixing

code written by users is simply impossible for the library

developer, and hence backwards-compatibility is lost.

This problem is sometimes unavoidable, since one cannot

in general expect to get instances of the superclass for free.

For instance, takeNum, the class of types with basic numeric

operations. If we decide we want Eq as a superclass of Num,

we really must provide an equality for every Num instance.

Here, where our decision was somewhat arbitrary, the Eq
superclass behaves as a prerequisite of Num. However, for

Eq and Ord, there should not be any extra requirements for

defining an ordering, since (≡) can always be implemented

via compare. The class Eq is a consequence of Ord, not a
prerequisite! By the superclass, we are simply trying to make

the typeclass system “aware” of this, but doing so results in

generalised breakage. In practice, programmers will often

find all offending Ord τ instances and add:

instance Eq τ where

x ≡ y = case compare x y of

EQ → True
→ False

which, exploiting mutual recursion, fixes the problem and

does not require any insight in defining (≡). In a case like

this, where the superclass is definable from the methods of

the subclass, we call the superclass degenerate.
Summarising, for degenerate superclasses, programmers

are not only required to revisit their existing code, but also

forced to write instances that have no logical raison d’être

and are simply boilerplate. Even worse, this process might

be repeated as programmers wish to model more relations,

since one can hardly predict all future needs in advance. For

example, if the programmer later wishes to model partial

orders, a similar chaos ensues.

This situation is very unsatisfactory, and it goes against

our intuitive understanding of relations. In mathematics, we

learn new relations without the need to revisit definitions.

After all, learning that all total orders are also partial orders

does not change the definition of what a total order is, nor

requires us to revisit any previously-known total orders.

3 Class Morphisms
The main contribution of this paper is the notion of class
morphism, which express “is a” relations within the typeclass

system. As such, they bear resemblance to superclasses, with

two key differences. Firstly, class morphisms are open: they
can be added without modifying existing classes. Secondly,

class morphisms include a generic definition of a class in

terms of another, beyond merely stating their connection.
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The basic idea is that, when there is such a relation, an

instance declaration for a class one induces an instance decla-

ration for the other. Class morphisms allow the programmer

to state this connection within the type system itself, along

with how the new instance is constructed.

Syntactically, class morphisms are rather simple:

class morphism C → D where

m1 = e1
m2 = e2
...

Here, C and D are class names, called the antecedent and
consequent respectively; andm1,m2, ... are the methods of D.
The expressions e1, e2, ...must provide generic definitions for
the methods of D. By “generic”, we mean these definitions

must be polymorphic: they must define a D a instance where
a (a fresh type variable) can be assumed to be an instance of

C, but nothing else. The interpretation for such a morphism,

on a logical level, is evident: all C-types are D-types and here
is the proof. Operationally, any C τ instance induces a D τ
instance via this morphism, where the instance context is

taken from the C τ instance and the methods from the class

morphism. That is, given the previous morphism and the

instance declaration

instance C1 τ1, ...,Cn τn ⇒ C τ where ...

One can apply the morphism to the instance and obtain:

instance C1 τ1, ...,Cn τn ⇒ D τ where

m1 = e1
m2 = e2
...

which, with the C instance in-scope, is well-typed.

The semantics of class morphisms is given by an elabora-
tion into morphism-free code. Essentially, this elaboration

consists of (1) expanding qualified contexts (2) generating

new instances by applyingmorphisms and (3) trimming some

derived instances. Step 1 expands contexts with additional

constraints in order to defer the choice of some dictionaries,

as they cannot be (canonically) solved on the spot. Step 2

essentially saturates a module by generating all derivable

instances. These generated instances are not generic, but

concrete instances based on the concrete instances in scope.

The saturated set may be “too large”, and contain overlap

which must be removed; step 3 takes care of eliminating it,

asking the programmer for help when needed.

This elaboration is performed for source Haskell modules,
and not whole programs, which is crucial for separate compi-

lation. Once a module is elaborated, typechecking proceeds

as usual, and morphisms have no further impact in the com-

pilation of the module (besides being exported). Importantly,

Haskell’s semantics and constraint resolution process are

completely unaffected, and derived instances have the same

status as source ones (in particular, they are exported).

3.1 An Example Class Morphism
A well-known Haskell typeclass is Enum, for types which

can be put in correspondence with (a subset of) the integers.

Its definition is essentially the following:

class Enum a where

toEnum :: Int → a
fromEnum :: a → Int

It is clear that any Enum-type can be tested for equality: one

can simply map to the integers and do the comparison there.

However Enum is wholly unrelated to Eq, and hence the

following definitions for f1 and f2 rightly fail:

module A where

data ABC = A | B | C
instance Enum ABC where ...

f1 :: ABC → Bool
f1 x = x ≡ x -- No instance for (Eq ABC)

f2 :: Enum a ⇒ a → a → a → Bool
f2 x y z = x ≡ y ∨ y ≡ z -- No instance for (Eq a)

t :: Bool
t = f2 A B C

While fixing f1 is possible by declaring a (boilerplate) Eq ABC
instance, fixing f2 requires either adding a superclass to

Enum, possibly wreaking havoc in many modules; or manu-

ally adding Eq a to f2’s context, which needs to be propagated
through the call graph and quickly becomes cumbersome.

One can instead add a class morphism:

class morphism Enum → Eq where

x ≡ y = fromEnum x ≡ fromEnum y

With this definition, the missing Eq ABC instance is gen-

erated and spliced into the program, causing f1 to succeed.
Further, the typechecker will expand the context of f2 to
(Enum a, Eq a), turning it valid. The module is then elabo-

rated to:

data ABC = A | B | C
instance Enum ABC where ...

f1 :: ABC → Bool
f1 x = x ≡ x

f2 :: (Enum a, Eq a) ⇒ a → a → a → Bool
f2 x y z = x ≡ y ∨ y ≡ z

t :: Bool
t = f2 A B C

class morphism Enum → Eq where

x ≡ y = fromEnum x ≡ fromEnum y

instance Eq ABC where

x ≡ y = fromEnum x ≡ fromEnum y

which, ignoring the morphism itself, is a valid vanilla Haskell

program. Note that the body of t must now discharge an
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extra constraint, namely Eq ABC, which is given by the new

instance. This expansion is safe since the new constraints

are always dischargeable (see proof in §4).

Going one step further, one can obtainOrd instances from

Enum, via the following class morphism:

class morphism Enum → Ord where

x ‘compare‘ y = fromEnum x ‘compare‘ fromEnum y

In cases like this, where the consequent (Ord) has super-
classes (Eq), the morphism can only be allowed if there is

a generic way to build dictionaries for each of the super-

classes. It is therefore required that there be amorphism path
from the antecedent, or one of its transitive superclasses,

into each of the consequent’s superclasses. This ensures that

instances generated by the morphism are valid w.r.t. their

superclasses. Given the previous Enum → Eq morphism,

this one is accepted.

3.2 Finding Middle Ground
Suppose that in a development one becomes interested in

using partial orders. A class for them can be defined as:

class POrd a where

pcompare :: a → a → Maybe Ordering

where instances are expected to satisfy the proper laws, i.e.

to be reflexive, transitive, and anti-symmetric. Of course,

every partial order determines a notion of equality and every

total order is a partial order, but this is not at all reflected in

the type system; i.e. POrd bears no relation to Eq and Ord.
In Haskell, Eq is already a superclass ofOrd, as can be seen

see in the definition in §2, and POrd should be in between

the two. Making Eq a superclass of POrd is readily done—

no POrd instances yet exist so no breakage ensues from

it. On the other hand, expressing that “every total order is

a partial order” entails making POrd a superclass of Ord,
which results in breaking every existing Ord instance since,

again, no POrd instances yet exist.

Instead of superclasses, one can state the relation be-

tween these three classes as class morphisms. One may also

avoid making Eq a (degenerate) superclass of POrd, since a
POrd → Eq morphism provides the same logical behaviour.

class morphism POrd → Eq where

x ≡ y = case pcompare x y of

Just EQ → True
→ False

class morphism Ord → POrd where

pcompare x y = Just (compare x y)

The second morphism has effectively the same effect as

adding POrd as superclass of Ord, even though POrd is

defined in a different module. The definition of Ord does

not need to be modified. Given these morphisms, the type-

checker will enforce that everyOrd-type is a POrd-type, and

that every POrd-type is an Eq-type. Assuming the following

instances for Int,

instance Eq Int where
(≡) = primEqInt

instance Ord Int where
compare x y = if x = y then EQ else

if primLtInt x y then LT else GT

the morphisms above generate the following new instance:

instance POrd Int where
pcompare x y = Just (compare x y)

An Eq Int instance will also be generated by the morphism,

but “trimmed” away as there is a user-written one already

(and having both would cause an overlap error). At this point,

pcompare can be used over Ints, without any boilerplate.

In the case of a polymorphic function such as:

related ::Ord a ⇒ a → a → Bool
related x y = isJust (pcompare x y)

the context is expanded using the morphisms to obtain

related :: (Ord a,POrd a) ⇒ a → a → Bool
related x y = isJust (pcompare x y)

making the function valid. (There is no need to add Eq a,
since it is a superclass of Ord a.) Later, when compiling, the

Ord a constraint can be discarded as it is in fact unneeded,

decreasing the amount of dictionaries at runtime. Intuitively,

deferring the choice works since, eventually, a caller will

provide a dictionary for Ord t from an instance declaration,

and there will be a corresponding POrd t instance.
The reader might wonder, since there is bothOrd → POrd

and POrd → Eq, can one obtain an instance for Eq τ by

simply defining an Ord τ instance? Yes; as shown next, mor-

phisms may be declared from a class to one of its (transitive)

superclasses, as long as the morphisms meet a few restric-

tions.

3.3 Dealing with Degenerate Superclasses
In recent versions of GHC, functors, applicatives, and mon-

ads have the following superclass relation:

class Functor f where

fmap :: (a → b) → f a → f b

class Functor f ⇒ Applicative f where

pure :: a → f a
(⊛) :: f (a → b) → f a → f b

class Applicative m ⇒ Monad m where

return :: a → m a
(>>=) ::m a → (a → m b) → m b

Hence, when defining a monad instance, say for a type con-

structorM, not only must a programmer define return and

(>>=), but she must also define an Applicative instance and
4
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a Functor instance. Here, in fact, the extensional behaviour

of such instances is determined by the monadic operations.

The only real choice for these definitions is how to imple-

ment them, i.e. their intensional behaviour. In most cases,

programmers are happy enough with default definitions:

instance Functor M where

fmap f x = pure f ⊛ x

instance Applicative M where

pure = return
mf ⊛mx = mf >>= λf → mx >>= λx → return (f x)

We can avoid this boilerplate by declaring morphisms which

provide these default definitions once and for all:

class morphism Applicative → Functor where
fmap f x = pure f ⊛ x

class morphism Monad → Applicative where
pure = return
mf ⊛mx = mf >>= λf → mx >>= λx → return (f x)

Now, a monad instance can be given just by implementing

return and (>>=), the rest is generated automatically.

Note the difference with the previous example: this mor-

phism is from a class into one of its superclasses. In such

cases, we call the morphism upwards. Upwards morphisms

do not increase polymorphism; their only purpose is to avoid

boilerplate instances for degenerate superclasses.

For upwards morphisms, the superclass check is more

restrictive. We can accept the Monad → Applicative mor-

phism only because there is a way to generically build its

Functor superclass from theMonad antecedent, namely com-

posing bothmorphisms. On its own, it must be rejected, since

the compiler cannot generate valid instances. Therefore, it

is required that for an upwards morphism C → D, there are
morphism paths from C into the superclasses of D, without
considering C’s superclasses.

3.4 Overriding Instances
Let us put the morphisms defined in the previous subsection

to use. Consider the writer monad, which consists of the pair-

ing of a monoid type (with unit mempty and multiplication

mappend) and a value.

data Writer m a =Wr m a

instance Monoid m ⇒ Monad (Writer m) where

return x =Wr mempty x
(Wr m x) >>= f = let Wr m′ x ′ = f x in

Wr (mappend m m′) x ′

Thanks to the two morphisms of the previous subsection,

there is no need for boilerplate instances, and this definition

is accepted. However, the derived instances are not ideal.

instance Monoid m ⇒ Applicative (Writer m)

instance Monoid m ⇒ Functor (Writer m)

The Monoid m assumption is in fact not needed for mak-

ing Writer m a Functor, but the typechecker has no way

of realising that. To avoid this loss of generality, one may

override the generated instance with a more general one:

instance Functor (Writer m) where

fmap f (Wr m a) =Wr m (f a)

Then, the derived Functor instance will be discarded dur-

ing trimming, as a strictly more general one exists. In gen-

eral, the programmer may override any derived instance

by an equivalent or more general one. She might do so to

choose a different behaviour, to use a more efficient imple-

mentation, or, as above, to relax constraints. In any case, any

programmer-written instance is the canonical, unique one.

Note, however, that derived instances are exported and

cannot be overridden from other modules. This is usually

not a problem: by following the accepted good practice of

declaring instances in themodule where the datatype or class

is defined (i.e. avoiding orphans), the user-declared instance

always prevails.

3.5 Using Different Presentations
Imagine a functional programmer gets stranded on a desert

island on their way to ICFP’04. There, after much thought,

she comes up with a brilliant idea for representing certain

computational effects and defines the following class:

class Functor f ⇒ Monoidal f where

point :: a → f a
merge :: f a → f b → ((a, b) → c) → f c

Upon returning to civilisation, she finds out an equivalent

class, Applicative, has been formulated and many libraries

developed for it. Wanting to be able to use these libraries

from her own code, she adds two morphisms:

class morphism Monoidal → Applicative where
pure = point
ff ⊛ xx = merge ff xx (λ(f , x) → f x)

class morphism Applicative → Monoidal where
point = pure
merge f g h = pure (curry h)⊛ f ⊛ x
where curry f x y = f (x, y)

Now she may use Applicative instances with functions ex-

pectingMonoidal, and use herMonoidal instances with func-
tions expecting Applicatives. She can even use such mor-

phisms to seamlessly bridge between separate libraries, e.g.

one dealing with Applicatives and one withMonoidal, with-
out modifying either one.

In general, class morphisms can transparently convert two

different class presentations of the same concept.
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3.6 Solving Conflicts
With class morphisms, situations may arise where it is not

clear which instance should be generated. For example, if

one adds the following morphism to the ones in §3.3,

class morphism Monad → Functor where
fmap f x = x >>= (return ◦ f )

then two different Functor M instances are possible.

An option here is to simply fail, and ask the programmer

to disambiguate the situation by providing her own instance.

However, this quickly becomes tiring: everyMonad instance

would need to disambiguate its Functor instance, and hence

morphisms would fail to avoid boilerplate.

Instead, instances may be disambiguated via some auto-

mated (and possibly arbitrary) policy. For instance, one might

favour short morphism paths over long ones, thus preferring

the new morphism to the composition of the other two. By

virtue of elaboration, any such policy will preserve canonic-

ity, as instances are chosen only once (even if differently at

different types). To preserve coherence, however, the policy

must be definable at the source code level—a policy such as

“take any instance” would be canonical, but incoherent, as

the meaning of “any” is not well-defined.

There are many coherent policies, with slightly differ-

ent guarantees about what happens when instances or mor-

phisms are added. From here on, our policy will be simply

to choose the shortest path to generate instances, and fail if

there is more than one path of minimum length. Then, for

the example at the beginning of this subsection, one can de-

fine a Monad, Applicative, or Functor instance for any type

constructor and obtain all of its consequences without con-

flict. However, declaring both Monad T and Applicative T
will cause an ambiguity error for the Functor T consequence,

requiring disambiguation.

Other interesting options are possible, by adding some

more structure. For instance, each morphism could be dec-

orated with a “weight” used to infer a cost for derived in-

stances. Then, a programmer can avoid more of these errors

by careful choice of the costs: if the Monad → Functor and
Applicative → Functor morphisms had different weights,

the previous example would be unambiguous.

In any case, the policy is best-effort. When it fails, pro-

grammers must manually disambiguate their programs. We

only consider disambiguating via declaring instances here,

but other methods are certainly possible. For instance, and

similarly to “Deriving Via” [Blöndal et al. 2018] the program-

mer could manually specify that a given instance is to be

found via somemorphism, instead of spelling out its methods

explicitly.

3.7 Morphisms and Modules
Class morphisms interact smoothly with modular program-

ming and separate compilation. Consider the following ex-

ample program:

module A where

class C a

f :: C a ⇒ ...

module B where

import A

class D a
class morphism C → D

g :: C a ⇒ ...

When expanding contexts, the morphism is in-scope for g
but not for f , which means g’s context will be expanded to

(C a,D a), and f ’s will be unchanged. Therefore, callers of f
only need to solve a C a constraint, as expected. Whether the

morphism is in-scope at f ’s call-sites is irrelevant. For g, its
call-sites need to solve both C a and D a, instead of the C a
it advertises. However, if g is in-scope, the morphism must

be in-scope as well, and thus the calling function will either

have its own context expanded, or the D a constraint will

be solved via the generated instances. The same argument

extends to any layout of morphisms across modules.

In general, contexts are only expanded with the mor-

phisms in scope. Previously checked modules need no modi-

fication when morphisms are added in modules importing

them. This means separate compilation, an essential fea-

ture in large projects, is not affected. This is in contrast to

superclasses where, even if there was some automatic gener-

ation of instances, the shape of the dictionaries for C would

change, and modules compiled with the superclass could not

interoperate with those that were compiled without it.

For a detailed example, consider the following modules.

All modules import Prelude, and we omit methods since they

are irrelevant here.

module Prelude where
class morphism Monad → Applicative
class morphism Applicative → Functor
class morphism Pointed → Functor
data T a

module ModA where

instance Monad T

module ModB where

import ModA
instance Pointed T

module ModC where

import ModA
instance Applicative T
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module ModD where

import ModA
class morphism Monad → Functor
data R a
instance Monad R

module ModE where

instance Functor T

The Prelude module contains no instances.

While checking ModA, instances for Applicative T and

Functor T are generated and added to the module. They are

also exported, alongside theMonad T one.

While checking ModB, since ModA’s Functor T instance

is in-scope, the derived Functor T is trimmed (otherwise,

ModB would raise an overlap error).

ForModC, there is a Functor T candidate, which is trimmed

for the same reason as inModB. However, the Applicative in-
stance is rejected since it overlapswithModA’sApplicative T
instance. While trimmingModC’s instance would succeed

(canonically and coherently!), we believe the compiler should

honour the source instance. The sensible choice is to fail,

and have the programmer amend the situation.

In ModD, the shortest path between Monad and Functor
has now changed, but this does not affect existing instances

in anyway. No conflict arises for T since no new instances are

generated, even ifModB,ModC, or both, are imported. For

R, a Functor R instance is generated via the new morphism,

and an Applicative R one from the one in ModA. Since R
and T are different types, canonicity holds.

ModuleModE (which generates no new instances) over-

laps withModA, but neither module imports each other, so

this cannot be detected here. This could be detected later if

the compiler performed overlap checking for imports; but

(currently) GHC does not perform this check and would

accept this example.

Note how the errors and (global) losses of canonicity arise

from “orphan” instances and “orphan” morphisms. Moving T
to ModA, and theMonad → Functor morphism to Prelude,
prevents these situations altogether.

3.8 A Limitation: Higher-rank Polymorphism
Consider the following code using higher-rank polymor-

phism, available in GHC via the -XRankNTypes option:

module A where

f :: (∀a.Enum a ⇒ a → a → Bool) → Bool
f c = c 1 2 -- a is instantiated to Int

module B where

class morphism Enum → Eq where ...

g :: Enum a ⇒ a → a → Bool
g x y = x ≡ y

h = f g

Terms
E, F ::= x variables

| EF application
| λx .E abstraction
| let x : σ := E in F local definition

Types
τ ::= t type variables

| τ → τ function types
ρ ::= P ⇒ τ qualified types
σ ::= ∀T .ρ type schemes

Logical components
C,D, . . . class names
π ::= C τ constraints
P ::= π1,π2, . . . contexts
c ::= Class P ⇒π wheremi : ti class declarations
i ::= Inst P ⇒π wheremi = Ei instance declarations
m ::= Morph C →D wheremi = Ei morphism declarations
Γ ::= (c, i,m) program contexts

Figure 1. Syntax for DML

In module A, at the time of the definition of f , the mor-

phism was not in scope and so the annotated type of f is

not changed: it expects an Enum-polymorphic function. The

body of f can then call its argument c providing only a dic-

tionary for Enum, as it does, providing the one for Enum Int.
Now in module B, the g function uses (≡) over a type for

which only Enum was assumed. This, of course, succeeds

only due to the morphism present in B. We have previously

argued (and we shall prove in §4) that, for Hindley-Milner

polymorphism, this expansion is safe.

However, typechecking h fails, as f expects a functionwith
only an Enum constraint, for which it can provide evidence.

It was not compiled to provide a Eq a dictionary and it is

even possible that no Eq Int instance is in-scope at A.
Trying to coerce g into the (real) type Enum a ⇒ a →

a → Bool is also not possible. While, due to saturation, there

must be a matching Eq instance for the Enum a constraint, it
cannot generically be computed at this point without losing

canonicity, as a is unknown.
Some possible solutions to this problem could be to allow

opting-out of context expansion, or to allow explicitly con-

structing the derived dictionary via a morphism, at the cost

of losing canonicity.

4 Class Morphisms, Formally
In this section we provide a formal description of class mor-

phisms for a a core calculus with typeclasses, dubbed DML

(for “deductive” ML). The formalisation is heavily based on

Jones’s [1995] theory of qualified types. Similarly to the lan-

guage used there (OML), our language is Hindley-Milner

polymorphic and contains global (unscoped) declarations of

7
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id

P ⊩ P

term

P ⊩ ∅

fst

P ,Q ⊩ P

snd

P ,Q ⊩ Q
univ

P ⊩ Q P ⊩ R

P ⊩ Q,R

trans

P ⊩ Q Q ⊩ R

P ⊩ R

close

P ⊩ Q

SP ⊩ SQ
super

(Class P ⇒ π ) ∈ Γ

π ⊩ P

inst

(Inst P ⇒ π ) ∈ Γ

P ⊩ π

morph

(C → D) ∈ Γ

Ca ⊩ Da

Figure 2. DML predicate entailment

→E
P | A ⊢ E : τ ′ → τ P | A ⊢ F : τ ′

P | A ⊢ EF : τ

→I
P | A,x : τ ′ ⊢ E : τ

P | A ⊢ λx .E : τ ′ → τ

⇒E
P | A ⊢ E : π ⇒ ρ P ⊩ π

P | A ⊢ E : ρ

⇒I
P ,π | A ⊢ E : ρ

P | A ⊢ E : π ⇒ ρ

∀E
P | A ⊢ E : ∀α .σ
P | A ⊢ E : σ [τ/α]

∀I
P | A ⊢ E : σ α < TV (A) ∪TV (P)

P | A ⊢ E : ∀α .σ
var

(x : σ ) ∈ A

P | A ⊢ x : σ

let

P | A ⊢ E : σ Q | A,x : σ ⊢ F : τ

P ,Q | A ⊢ (let x : σ := E in F ) : τ

Figure 3. Typing rules for DML

typeclasses and instances. We also take OML as the target

of the elaboration. Types in DML are stratified in order to

restrict where type quantification and logical contexts are

allowed; types such as (∀a.a → b) → b or a → π ⇒ b are

not part of the language.

In DML, class morphisms are part of the program environ-

ment and taken into account for the entailment relation, but

the calculus is otherwise identical to OML.We give its syntax

in Figure 1 and its entailment rules in Figure 2. Entailment

in DML differs from that of OML only in that rule morph

is added. Its typing judgement (described in Figure 3) is of

the form P | A ⊢ E : σ , where P is a logical context, A is a

standard typing environment and σ is a qualified type.

Program contexts Γ contain finite sets of classes, instances,
and morphisms. Throughout this section, we ignore method

definitions in these constructs. Although they need to be

typechecked, this is orthogonal to both resolution and elab-

oration, which is our current interest.

When instantiating an overloaded term of type P ⇒ τ , the
constraints in P must be proven. This is formalised via the

entailment relation, described in Figure 2. Entailment makes

use of superclasses, instance declarations, and morphisms

to prove constraints. We distinguish two sub-relations: ⊩o
is the subset that does not use theMorph rule, and ⊩v the

one which does not use Morph nor Inst. The first subset

coincides with the entailment relation in the target (OML).

The second provides a way to compare constraints without

depending on the set of morphisms or instances, and is used

to compare instances by generality.

As previously described, our translation is based on three

program transformations:

• Close: Contexts in functions and instance declarations

are transformed to their logical closure.

• Saturate: Instance declarations are automatically gen-

erated to obtain a “cover” of the morphisms.

• Trim: Overlap of derived instances is removed, by com-

paring generality and by conflict policy.

The result after these transformations is an OML program,

without any class morphisms. Since contexts were expanded,

more constraints may need to be solved to typecheck it. We

prove that these extra constraints can always be discharged,

i.e. that the translation does not introduce errors. Trimming

can fail, however, for two reasons: either a proper set of in-

stances does not exist, or there might be several of them with

no clear way to disambiguate. In either case, the programmer

can fix the situation by providing extra instances.

4.1 Preliminaries
From here onwards, we fix a program context Γ with classes

C, source instances I0 and morphismsM.

When D is a superclass of C, we note it as D << C (with Γ
implicit). We say a constraint π2 is a consequence of π1, and
note it as π1 → π2, when π2 can be concluded from π1 in
one step via a morphism or superclass assumption. Formally,

the consequence relation is defined by the following rules:

D<<C

C τ → D τ

(m : C → D) ∈ M

C τ → D τ

We note the reflexive-transitive closure of (→) as (→∗).

Given a constraint C τ , its deductive closure is obtained by

collecting its transitive consequences; for a set of constraints,

it is the union of the closures of its members.

π = {π ′ | π →∗ π ′}

{π1,π2, . . . ,πn} = π1 ∪ π2 ∪ . . . ∪ πn

The deductive closure of a constraint C τ must be finite, as

it is bound by the set {D τ | D ∈ C}, and C is finite. Further,

the deductive closure of a finite set is finite. The deductive

closure is also monotone, that is, π1 ⊆ π2 =⇒ π1 ⊆ π2.
The fact that the deductive closure is monotone is crucial

for modular compilation, where not all modules are in-scope

at once. However, we do not formalise the modular aspect

here.

We use the same notation on types and instance heads

to denote the recursive transformation of every qualified

8
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context in them. That is, P ⇒ σ = P ⇒ σ and Inst P ⇒ π =
Inst P ⇒ π (note π is left unchanged).

We call an instance (i : Inst P ⇒ π ) more general than
(i ′ : Inst P ′ ⇒ π ′), and denote it by i ′ ⪯ i , when there

is a substitution S such that Sπ = π ′
and P ′ ⊩v SP . The

reason ⊩v is used is that it does not depend on the set of

instances. The intuition is that i can replace i ′ since, after
some instantiation, it requires the same set of hypotheses,

or a weaker one. When i ⪯ i ′ but i ′ ̸⪯ i , we say i ′ is strictly
more general and note it as i ≺ i ′. Also, when i ⪯ i ′ and
i ′ ⪯ i , we call the instances equivalent.

Due to superclasses, not every program context is valid.

When S is a superclass of C, an instance declaration for

P ⇒ C τ can only be accepted if there is a way to solve S τ
from P. We model this by requiring that, for every instance

(i : Inst P ⇒ C τ ) ∈ I0, there is an i
′ ∈ I0 such that (Inst P ⇒

S τ ) ⪯ i ′. If this is the case for all instances in I0, we say that

I0 satisfies the classes in C, and note it as I0 |= C.

Similarly, morphisms must also respect superclasses. We

say a set of morphisms M satisfies a set of classes C (noted

M |= C) when for every morphism (m : C → D) inM and

S<<D, there is a morphism path fromC to S . Note that, in this
formalisation, we take the more stringent approach required

for ‘upwards’ morphisms in all cases. This simplifies the

formalisation, and is inconsequential since one can always

write these “direct” morphisms anyway.

We say two instances (i : Inst P ⇒ C τ ) and (i ′ : Inst P ′ ⇒

C τ ′) overlap when τ unifies with τ ′. In order to guarantee

canonicity, overlaps must be forbidden, so we require that

instances in I0 are non-overlapping from here onwards. We

also assume that I0 |= C andM |= C. We now describe the

elaboration steps.

4.2 Closing Contexts
For every instance declaration in Γ, its qualified contexts

are expanded to its deductive closure (w.r.t. all morphisms

in-scope). That is, we transform them like so:

Inst P ⇒ π = Inst P ⇒ π

This transformation is applied each instance inI0, generating

a new set I0, which we abbreviate as I1. Class definitions

and morphisms are unaffected by this step.

The types of every term in the program also have their

contexts expanded. For DML, the only place where qual-

ified types appear in term syntax is in the ‘let’ construct.

Therefore, we transform:

x = x

EF = E F

λx .E = λx .E

let x : σ := E in F = let x : σ := E in F

In practice, the contexts of every type annotation (such as

signatures) must be expanded.

The reason for classes to be unaffected by this step is that

morphisms can be circular, but cycles in the class hierarchy

can make typechecking undecidable. Even if decidability

could be guaranteed, it is not clear one would accept that

the declaration of a morphism may introduce superclasses.

The lack of this expansion is only noticeable in default class

methods. However, since they are usually defined in terms

of each other, this does not seem like a significant limitation.

4.3 Saturating the Set of Instances
After expanding contexts, the translation proceeds to gener-

ate derived instances.

A morphismmmay be applied to an instance declaration i ,
obtaining a derived instancem⟨i⟩. More formally, application

is defined in the following manner:

m = Morph C → D wheremi = Ei
i = Inst P ⇒ C τ wheremj = E ′

j
m⟨i⟩ = Inst P ⇒ D τ wheremi = Ei

Somewhat surprisingly, i’s methods are completely ignored.

The explanation is that definitions in the morphism (each Ei )
are overloaded themselves, and i (or a more general instance)

will be in the final set of instances. Therefore, the overloading

will be resolved to the proper definitions by the typeclass

system of OML.

Given the sets I1 and M, we can consider the (possibly

infinite) set of all instances that can be built from them by

morphism application. We call this set the saturation of I1
(w.r.t.M), and note it as S(I1) (withM implicit).

As an example, if I1 andM are given as per the following

code (omitting methods):

newtype Pair a = P {unP :: (a, a)}

i0 : instance Monad [ ]

i1 : instance Applicative Pair
m0 : class morphism Monad → Applicative
m1 : class morphism Applicative → Functor

then S(I1) is I1 with the following extra instances:

i2 = m0 ⟨i0⟩ : instance Applicative [ ]
i3 = m1⟨i2⟩ : instance Functor [ ]
i4 = m0 ⟨i1⟩ : instance Functor Pair

while if the two morphisms from §3.5 are added,

m2 : class morphism Applicative → Monoidal
m3 : class morphism Monoidal → Applicative

then S(I1) contains an infinite number ofMonoidal [ ] and
Applicative [ ] instances by cycling throughm2 andm3.

i5 = m2 ⟨i2⟩ : instance Monoidal [ ]
i6 = m3⟨i5⟩ : instance Applicative [ ]
i7 = m2 ⟨i6⟩ : instance Monoidal [ ]
...

9
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We abbreviateS(I1) as I2. Given thatI0 is valid, i.e. satisfies
its classes, I2 is valid as well, since the required instances

are generated by morphism application. A proof of this fact

is given in the appendix. Furthermore, the saturation of any

instance set satisfies the morphisms (S(I) |= M) in the

following sense: for any instance (i : Inst P ⇒ C τ ) ∈

S(I) and (m : C → D) ∈ M, there is an i ′ ∈ S(I) such

that (Inst P ⇒ D τ ) ⪯ i ′. (Note the similarity to satisfying

superclasses.) This is trivially attained by picking i ′ =m⟨i⟩.

4.4 Trimming
After saturation, the resulting set of instances I2 satisfies its

classes and its morphisms. This implies that the elaborated

program can be typechecked correctly by resolving all the

extra arising constraints, as shown in §4.5. However, there

are two potential problems with this set: (1) it may be infinite

and (2) it may contain overlapping instances. In order to be

able to typecheck efficiently and canonically, a finite, non-

overlapping set of instances with the same logical power is

needed. This motivates the following definition:

Definition 4.1. We say that a set of instances I covers (or
is a cover of ) a set of instances J , when for every instance

j ∈ J , there is some i ∈ I such that j ⪯ i . We denote this by

I ⊑ J . This relation is reflexive and transitive; i.e. a preorder.

Our goal is then to find a finite subset of I2 that is a non-

overlapping cover of it. A first step is to remove the less-

general instances from it:

Lemma 4.2. If for i, i ′ in a set of instances I we have i ⪯ i ′,
then I \ {i} ⊑ I. That is, i can be removed without affecting
the logical power of I.

We can iteratively apply this lemma in order to remove

redundant instances from the generated context, but doing

so unrestrictedly leads to ambiguity: if i and i ′ are equivalent
(and no other instance is more general than them), which one

should be kept? We can however safely remove instances

that are strictly less general than others, without risking

ambiguity. In that case, the process of removing instances is

confluent and normalising, and thus one can automatically

find an instance set where every instance is maximal, and
which covers I2. It is here where ⊩v proves valuable to

compare instances, as it does not depend on the instances,

which vary during trimming.

After this first cut, some overlap of maximal instances

might still exist. Firstly, there might be an arbitrary num-

ber of equivalent instances (as in the example above with

Monoidal and Applicative). In this case, it suffices for the

policy or the programmer to pick a single representative of

the equivalence class; by the previous lemma, this does not

change the expressive power. Once done, the set of instances

forcibly becomes finite.

However, that is not enough, as overlaps might exist be-

tween non-equivalent instances. Consider the definitions:

j0 : instance A (Int, b)
j1 : instance B (a,Bool)
n0 : class morphism A → C
n1 : class morphism B → C

Its saturation contains two extra instances, namely:

n0 ⟨j0⟩ : instance C (Int, b)
n1⟨j1⟩ : instance C (a,Bool)

which overlap, but neither of which is more general than the

other, and removing either of which hinders coverage. This

same issue can also be manifest via contexts, such as:

j0 : instance P a ⇒ A [a]
j1 : instance Q a ⇒ B [a]
n0 : class morphism A → C
n1 : class morphism B → C

whose saturation has the same dilemma as above:

n0 ⟨j0⟩ : instance P a ⇒ C [a]
n1⟨j1⟩ : instance Q a ⇒ C [a]

This kind of overlap, which we call logical overlap, cannot
be automatically resolved by the typechecker. Therefore,

programs containing logical overlap are rejected. The user

can fix such an overlap by removing some of the offending

instances or morphisms, or by declaring an instance which

subsumes the conflicting ones (e.g. instance C a).
At the end of trimming, if successful, we are left with a

finite non-overlapping set of instances I3 which covers I2,

and which becomes the set of instances of the elaborated

OML program. Class morphisms are discarded at this stage

and the elaborated program context is defined as:

Γ = (C,I3)

4.5 Correctness of Elaboration
At this stage, we have a program context Γ that covers the

logical closure of Γ. Consider our initial program p, well-
typed in Γ at type σ in DML. In OML, due to the fact that

functions and instances now have extended contexts, more

constraints need to be solved in order to typecheck p. We

prove that it is always the case that p is typeable in the target,

at type σ . This fact is mostly a consequence of the following

lemma, whose proof we provide in the appendix.

Lemma 4.3 (closure entailment).

Γ | P ⊩ P ′

Γ | P ⊩o P ′

Using the previous lemma, it can be shown that typing is

preserved by the closure translation:

Lemma 4.4 (correctness of elaboration, open environments).

P | A ⊢ e : σ

P | A ⊢o e : σ
10
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As a corollary, by taking A and P to be empty environ-

ments, it follows that the transformation preserves well-

typing of whole programs.

Theorem 4.5 (correctness of elaboration).

· | · ⊢ e : σ

· | · ⊢o e : σ

5 Class Morphisms, in GHC
We describe the main parts of our prototype implemen-

tation: typechecking morphisms, calculating a cover, and

generating instances efficiently. Additional technical details,

can be found in the README.md file in the repository at

http://github.com/cifasis/ghc-cm.

While we have presented the semantics of class mor-

phisms as an elaboration previous to the elaboration of type-

classes, our implementation in fact performs both at once.

This enables an optimisation: derived instances can be con-

structed by composing dictionary functions, instead of by

generating source code. While the bodies of source instances

and morphisms must be typechecked, there is no such need

for derived instances, cutting down on compilation time.

Interleaving morphism elaboration into the existing type-

checking pipeline is not trivial, hence this section.

For context expansion, we also require that all relevant

morphisms are in-scope when computing deductive closures,

which is non-trivial given that Haskell code is unordered.

We ensure this by tweaking GHC’s dependency analysis to

ensure every class C is typechecked in the same recursive

“group” as all morphisms with antecedent C, which transi-

tively ensures that every time a closure π is computed, it is

not missing any constraints.

Our current prototype is not optimised, and we have not

yet performed significant benchmarks. Also, we have not

yet implemented error messages over source code. Errors

are currently reported over elaborated terms.

The implementation is hardly invasive: our net change

is around 1000 lines of code. About 300 lines are bureau-

cratic changes such as writing morphisms to .hi files and
threading them through environments. The rest is almost

completely accounted for by code to expand contexts and

compute the cover. Existing typeclass code required virtually

no modifications.

5.1 Typechecking Morphism Heads
GHC typechecks instances in two phases—first the heads,

then the bodies. We take the same approach for morphisms.

In this first phase, we simply check that each morphism

is well-formed w.r.t. the superclass hierarchy and allocate

a “dictionary function” for it. This dictionary function will

later be used to build the derived instances.

Concretely, when typechecking a morphism such as:

class morphism Enum → Ord where

compare x y = compare (fromEnum x) (fromEnum y)

the first step is to allocate a fresh name for the dictionary

function. Its definition will be provided later, once the meth-

ods have been typechecked. The type of the dictionary func-

tion is morally ∀a.EnumDict a → OrdDict a.
However, this function must also build dictionaries for the

superclasses of the consequent, namely an EqDict a, and this
cannot (canonically) be done with a unknown. While the

superclass check ensures there must be one such dictionary,

the correct choice varies with the type variable a, which
is unknown. Thus, these dictionaries are simply deferred

by taking more arguments, to be filled-in later when they

can be correctly resolved. In this example, the type for the

dictionary function is:

md :: ∀a.EnumDict a → EqDict a → OrdDict a

Having generated this identifier, we simply store it in the

environment along with an internal representation of the

morphism and its (not yet typechecked) set of methods.

5.2 Computing the Trimmed Cover
After having typechecked all instance and morphism heads

in a module, we proceed to saturate and trim them, con-

sidering as well all imported instances and morphisms. As

saturated sets can be infinite, attempting to first saturate and

them trim could diverge. We avoid divergence by performing

both steps at once.

Our implementations makes a choice tied to our particular

policy of choosing shortest paths. Basically, instances are

generated in a breadth-first fashion, ensuring that derived

instances “closer” to a source instance are generated first.

The immediate successors of an instance are the applications

of it with all compatible morphisms, as expected. Thus, if at

any point an instance i is generated, and an equally (or more)

general i ′ was already generated (necessarily with a smaller

distance), then i and all its successors will be “shadowed” by
i ′ and its successors. Hence, it is safe to ignore i and cut the

tree at this point.

Since the infiniteness of the saturated set can only stem

from equivalence classes of instances, the procedure is guar-

anteed to terminate. After obtaining a finite cover, the imple-

mentation proceeds to trim it by removing non-maximal in-

stances, as described in §4, but considering source instances

as maximal. If any overlap (of equivalent derived instances,

or a logical overlap) remains after this stage, the compiler

rejects the program as ambiguous.

In reality, throughout this step, real instances are not yet

generated: only “markers” with information on how they

should be built are. Since many of them will be trimmed, it

would be wasteful to generate them fully. More importantly,

because of superclasses, their internal representations cannot

11
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be built independently, and this must be deferred until the

instance set is fully determined.

5.3 Generating Instances
Internally, instances are also essentially dictionary-building

functions. To build the dictionary function corresponding

to a morphism applicationm⟨i⟩, we essentially compose the
dictionary functions ofm and i . Take for example an instance

declaration:

instance Enum a ⇒ Enum (T a)

Its dictionary function will be of type:

id : ∀a.EnumDict a → EnumDict (T a)

Composing it with the previousmd needs to account for both

the the hypotheses and superclasses. Form⟨i⟩, we generate
the following dictionary function:

jd :: ∀a.EnumDict a → OrdDict (T a)
jd enumDa = md (id enumDa)

where the superclass constraint EqDict (T a) marked with

an underscore is filled by resolution with the proper instance,

which is uniquely determined by now.

No typechecking ofm⟨i⟩’s methods is needed. In fact, the

body ofm need not even be known for this procedure. When

m is imported from amodule, its body is indeed hidden—only

the name of its dictionary function is known.

5.4 Typechecking Morphism Bodies
Morphisms themselves must, of course, be checked, and their

dictionary functions given a definition. To do this, we simply

typecheck them as if they were instances, adding the super-

classes of the consequent to their context. For instance, the

morphism in §5.1 is elaborated into the following instance

declaration:

instance (Enum a, Eq a) ⇒ Ord a where

compare x y = compare (fromEnum x) (fromEnum y)

Then, this instance is typechecked by GHC’s existing in-

stance typechecking procedures, without any modification.

The result of checking the instance is a definition formd at

the proper type, completing the program.

While a morphism is typechecked as if it were an instance,

this “virtual” instance is simply a typechecking artifact: it

does not participate in resolution at all.

6 Related work
Elimination of Boilerplate Instances There have been

several proposals for extending GHC which tackle type-

class refactoring and boilerplate instances. In default super-
classes [McBride 2011] and intrinsic superclasses [McBride

2014] one can have default definitions for superclasses. The

instance template proposal [Eisenberg 2014] is closer to ours

in the sense that from one class one can obtain instances for

other classes which are not necessarily superclasses. How-

ever, as opposed to class morphisms, all these proposals

require modifying class definitions, prohibiting the addition

of relations between classes in imported code.

Extensible Superclasses Extensible superclasses extend

the typeclass system with a kind of constraint handling rules

to specify superclasses openly [Sulzmann and Wang 2006].

However, these rules do not provide a definition of the su-

perclass in term of the subclass, and hence do not remove

the need for new instances. A notable strength of extensi-

ble superclasses is that they seamlessly support higher-rank

polymorphism, while class morphisms do not in general. On

the other hand, while class morphisms only require an elab-

oration, implementing extensible superclasses entails a deep

modification of the language semantics: typing information

needs to be present during execution, which in turn causes

a non-trivial overhead.

DerivingVia Deriving Via is an extension to Haskell’s gen-

eralised newtype deriving mechanism [Blöndal et al. 2018].

It allows the programmer to obtain an instance from that

of a representationally equivalent type. While it alleviates

the definition of boilerplate instances, its does not solve (nor

attempts to solve) the problem of refactoring the class hier-

archy. It would be interesting to extend it to allow instance

derivation via (named) class morphisms.

Instance Chains Instance chains [Morris and Jones 2010]

is a mechanism for defining instances via closed, backtrack-

ing, user-defined pattern-matching on types. It allows pro-

grammers to go beyond the usual power of instances, while

maintaining the canonicity and coherence of the typeclass

system. While some default generic definitions can be given

via instance chains, they must either be closed or manually

triggered, two characteristics which bring maintainability

issues. On the other hand, their ability to control overlapping

could be well-appreciated in the generation of a cover, as

it would allow ordering some overlaps and thus accepting

more programs.

Typeclasses Based on Implicit Search Another kind of

typeclass systems, mostly used in proof assistants [de Moura

et al. 2015; Devriese and Piessens 2011; Sozeau and Oury

2008], is based on implicit arguments and proof search. These

systems do not guarantee canonicity, but using dependent

types, the property can sometimes be encoded in dictionaries.

In these systems, defining a morphism from a class C to a

class D can amount to simply defining a function C → D on

dictionaries and marking it as an instance. Our work can be

seen as bringing this expressivity into Haskell, safely.

7 Conclusions and Future Work
We have presented class morphisms, a new feature for in-

troducing and exploiting relations between classes. A key

12
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aspect of class morphisms is that they are open: anyone can

add a class morphism even without access to modifying the

class definition. This goes against the grain for systems of

qualified types, in which the need for preserving canonic-

ity favours closed global definitions. Therefore, although

the idea of class morphisms is quite intuitive, its semantics

needed care in order not to lose canonicity.

One possible generalisation of class morphisms is to allow

instance-like shapes such as

class morphism (X a,Y [a]) → Z a

where the consequent must be “smaller” than every an-

tecedent if deductive closures and covers are to be finite.

However, the usefulness of this generalisation is yet unclear.

A limitation of class morphisms is that higher-order poly-

morphism (as available in GHC via extensions) is not seam-

lessly handled. Expanding the context of functions can be

problematic in the presence of higher-order polymorphism,

mainly due to the contravariance of left-nested contexts.

As illustrated by the examples, class morphisms allow

the expression of class relations as first-class language con-

structs, thus making several painful situations easy on the

programmer. Their semantics is given by a simple elabora-

tion and, importantly, do not require Haskell’s resolution

and dynamic semantics to be affected, making their imple-

mentation in a real compiler straightforward.
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A Proofs
Firstly, we show that the elaboration of a valid context Γ
is valid at the target; i.e., that it satisfies its superclasses

(Lemma A.4). We start with some auxiliary lemmas.

Lemma A.1. If P ⊩v P ′, then P ⊩v P ′

Proof. By induction on the shape of the hypothesis. All ap-

plicable cases, except for super, are trivial by the inductive

hypothesis and since the closure is monotonic over sets (triv-

ially by its definition). For super, we need to prove π ⊩v P ,

but P is contained in π , since π → π ′
for each π ′ ∈ P .

Therefore we conclude through fst and id.

□

Lemma A.2. For instances i and i ′, if i ⪯ i ′ then i ⪯ i ′.

Proof. Let i = Inst P ⇒ C τ and i ′ = Inst P ′ ⇒ C τ ′. By
hypothesis, we have that there is a substitution S such that

Sτ ′ = τ and P ⊩v SP ′
. Since the elaborated instances differ

only in their contexts, all that needs to be proven is that

P ⊩v SP ′
. This follows from Lemma A.1. □

The following lemmas use the names C, M, and Ii as in §4,

with the same assumptions. For an instance head Inst P ⇒

C τ , we write i[D] for the instance head created by replacing
its class with D, i.e. Inst P ⇒ D τ .

Lemma A.3 (validity of saturation). I2 |= C.

Proof. We pick an instance (i : Inst P ⇒ C τ ) in Γ′, where
S<<C . We need to show that an instance as least as general

as (Inst P ⇒ S τ ) exists in I2. We proceed by case analysis.

• Say i = i0 for i0 ∈ I0. Since I0 |= C, there must be an

i ′ in I0 at least as general as i0[S]. Then i ′ ∈ I2, and

by Lemma A.2, it is more general than i0[S] = i[S].
• Say i = m⟨i ′⟩, for some i ′ in I2. Since M |= C, we

have that there must be morphismsm1, . . . ,mn such

thatm1⟨. . .⟨mn ⟨i
′⟩⟩⟩ = i[D]. Clearly, this instance also

belongs to I2.

□

Lemma A.4 (validity of trimmed set). I3 |= C.

Proof. This follows trivially from Lemma A.3 andI3 covering

I2. □

Lemma A.5. If (i : Inst P ⇒ C τ ) ∈ I3 andC τ → D τ , then
there is an instance i ′ ∈ I3 such that i[D] ⪯ i ′.

Proof. By case analysis on C τ → D τ . If the relation holds

by a superclass assumption, then the fact that I3 |= C (by

Lemma A.4) guarantees exactly that the required instance

exists. Suppose instead is it via a morphism m : C → D.
Therefore,m⟨i⟩ must be in I2, as it is saturated set and i ∈ I2.

The instance m⟨i⟩ is equivalent to i[D], and since I3 is a

cover of I2, it must contain a more general instance, hence

we conclude. □
Lemma A.6. If (i : Inst P ⇒ C τ ) ∈ I3 and C τ →∗ D τ ,
then there is an instance i ′ ∈ I3 such that i[D] ⪯ i ′.

Proof. We proceed by induction on the π →∗ π ′
hypothesis.

If the path is of length zero, take i ′ = i . Suppose instead

that C τ → E τ →∗ D τ . By the previous lemma, there is an

instance (j : Inst Pj ⇒ E τj ) such that i[E] ⪯ j . That is, there
is a substitution S1 such that S1τj = τ and P ⊩v S1Pj . Since
the→ relation does not depend on concrete types, we also

have E τj →
∗ D τj . By the induction hypothesis, then, there

exists an instance (k : Inst Pk ⇒ D τk ) such that j[D] ⪯ k .
That is, there is a substitution S2 such that S2τk = τk and

Pj ⊩v S2Pk . We take i ′ = k . To see that it is more general

than i[D], take the substitution S1 · S2. Firstly, (S1 · S2)τk =
S1(S2τk ) = S1τj = τ , as needed. Then, by the subst rule and a
hypothesis, we also obtain that S1Pj ⊩v S1(S2Pk ) = (S1·S2)Pk .
By applying trans, and another hypothesis, we obtain that

P ⊩v (S1 · S2)Pk , as needed. □

Lemma A.7. If (i : Inst P ⇒ C τ ) ∈ I3, then P ⊩o C τ .

Proof. For each D τ ∈ C τ , there is, from the previous lemma,

an instance that allows to conclude P ⊩v D τ . We conclude

by repeated application of univ. □

Now we are ready to prove our main lemma, stating that

entailment is preserved by taking closures.

Proof for Lemma 4.3. We proceed by induction over the

derivation of P ⊩ P ′
in DML. The cases for the first six rules

of entailment are trivial. The case for rule close follows

from the fact that substitutions commute with the deductive

closure, which is easily established. The interesting cases are

rules super, morph, and inst. For the super, suppose we

concluded P fromC a via super. By the premise of super, we

have that P is the set of superclasses ofC a. By the definition

of the deductive closure, it is immediate that P ⊆ C a. We

conclude by monotonicity of entailment. The case for morph

is analogous to super, as they have the same effects regarding

entailment. For Inst, suppose C τ was concluded from an

instance declaration Inst P ⇒ C τ in I0. Then, an instance

at least as general as Inst P ⇒ C τ exists in I3. We can

conclude by applying Lemma A.7 to this instance, obtaining

P ⊩o C τ . □

Using the previous lemma, the proof for Lemma 4.4 is

immediate, since the only significant difference between

DML and OML is the notion of entailment. Theorem 4.5 is

simply a corollary of Lemma 4.4.
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