Kuiper: verified and efficient GPU programming

Anonymous Author(s)

Abstract

Kuiper is a language for safe and verified GPU program-
ming based on dependent types and concurrent separation
logic. Kuiper models the intricacies of the GPU programming
model, including the memory hierarchy, kernel launches, and
synchronization within a single comprehensive framework.
Memory bugs and data races are ruled out for any well-typed
program. Optionally, full functional-correctness proofs can
be performed. Kuiper programs can be heavily polymorphic
(over types, operations, memory layout, and more) and ex-
tract to efficient, specialized CUDA code. We use Kuiper
to implement several common GPU kernels (matrix multi-
plication, reductions, softmax). Kuiper is built over the F*
[Swamy et al. 2016] ecosystem.

GPU kernels are delicate pieces of code, where possibilities
for errors (memory bugs, data races, synchronization bugs,
etc) abound. At the same time, performance is paramount,
and compromises between performance and ease of program-
ming will normally favor performance. There is a clear need
for safe, performant languages in this space.

Kuiper is a language aiming to provide both. It is embed-
ded in Pulse, a dependently-typed programming language
based on concurrent separation logic [Ebner et al. 2025], al-
lowing a high-degree of expresiveness and verification. All
Kuiper programs are free of memory bugs and data races by
construction. Kuiper also allows the programmer to write
heavily-optimized code, not imposing any significant con-
straints over CUDA. Optionally, Kuiper programs can be
verified for functional correctness.

Kuiper is a work in progress.

1 Kuiper Basics

Kuiper is built on top of Pulse, which is a dependently-
typed programming language based on concurrent sepa-
ration logic [Ebner et al. 2025]. Program specifications in-
clude pre- and postconditions stating precise ownership of
resources. For instance, the following program copies a ref-
erence s into another one t:

fn copy (t s : ref a)

preserves s — Frac 'f 'vs
requires t — 'vt

ensures t — 'vs {

let v = !s;

t « v;

56
57
58
59

. . . 60
The function has several annotation clauses: preserves, requires,

and ensures. Multiple clauses of the same kind may be pro-
vided, in which case they are combined using x, the sepa-
rating conjunction. The preserves clause is just a shortcut
for resources that appear unchanged in both the pre- and
postcondition. The — symbols read “points to” states that a
given reference is live and set to some particular value. The
precondition states that this functions requires ownership
over (some fraction of) s and p (fully). Requiring only a frac-

« »

tion of “s” allows other threads to own other fractions of
“s” at the same time, and allows for read-only access to it.
The postcondition states that the value pointed to by s has
remained unchanged, and that ‘t" now points to the same

(33
value as ‘s’.

1.1 Modes for distinguishing CPU and GPU code

To model device and host functions, Kuiper introduces “mode
resources’. Every host function (e.g. the main function) re-
quires a cpu resource, and every device function (e.g. kernels
and functions called by them) requires a gpu resource. Both
of these resources are kept abstract, so nothing can be done
with them, a priori, except for passing them around. Ev-
ery function returns their mode resource back to the caller.
Kuiper can be used both to write whole programs and mixed
CPU/GPU libraries. In the first case, a program starts owning
the cpu resource.

val cpu :
val gpu :

slprop (* abstract *)
slprop (* abstract *)

Here is the Kuiper signature of a function that allocates
an uninitialized array in GPU memory. It can only be called
from the host.

fn gpu_array_alloco
(t : Type) {| sized t |} (len : nat)
preserves cpu
returns a : gpu_array t len
ensures 3 s. ga — s

The preserves here indicates that this function may only be
called when “owning” the CPU mode, which is returned back
to the caller. The function expects an element type t and a
length len. The {| sized t |} fragment is a typeclass con-
straint: arrays can only be created for types for which Kuiper
statically knows the size, to request the proper amount of
bytes to cudaMalloc. The function returns a new gpu_array
of the proper type and length. The postcondition states that
this array points to something, but makes no further guar-
antees about the contents. Kuiper provides types for device
memory data (gpu_ref, gpu_array, etc) in tandem with the
native Pulse counterparts (ref, array).

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

1.2 Kernel Descriptions and Kernel Calls

So far, the use of cpu and gpu mode resources prevents any
kind of calls between different modes. Kuiper provides func-
tions that allow calling (“launching”) kernels from CPU code,
provided the proper conditions are met. The simplest version
is the following, which spawns one single thread in the GPU
executing some function k.

fn launch_kernel;
(k : unit — unit (requires gpu x 'pre)
(ensures gpu * 'post))

preserves cpu requires 'pre ensures 'post

The launch_kernel; function can be called on any GPU func-
tion, provided it returns unit. The caller needs to provide
k’s precondition, and obtains back k’s postcondition. The
preserves guarantees this function can only be called from
the CPU, where the call can be properly configured (in the
case of CUDA, this would be something like k<<<1,1>>>).
For more realistic, parallel kernel calls, Kuiper provides a
record type for kernel descriptions (we elide the definition). A
value of this type specifies the kernel function to run, the grid

configuration, and any intermediate pre- and postconditions.
type kernel_desc (pre post : slprop) : Type

Once a record of this type is constructed, it can be launched
simply by calling the function below.

fn launch_kernel (k :
preserves cpu

kernel_desc 'pre 'post)
requires 'pre ensures 'post

Since the grid configuration is baked into the record, mis-
matches at the call are impossible.

For a given functionality in mind (e.g. multiplying two
matrices A and B into C), there will be a function to create a
kernel_desc that is specialized to exactly this taks which can
then be launched as-is, without providing extra arguments.
Roughly:

val mk_matmul_kdesc
(a : gpu_matrix 32 m k)
(b : gpu_matrix f32 k n)
(c : gpu_matrix f32 m n)
(#va #vb #vc :)
: kernel_desc (a +— va x b — vb x ¢ — vc)
(@ vaxbmr vbxcH vaXx vb)

where 32 represent the float type, and x is the (mathemati-
cal, specification-level) matrix multiplication. We have im-
plemented several (verified) versions of such multiplcations.
We elide discussing them for size constraints, and instead
focus on polymorphism and specialization aspects.

This kernel can then be launched as-is, without specify-
ing a grid as it as already baked into the description. The
code generation process will partially evaluate the program,
removing all these indirections and ending up with a simple
kernel call, without overhead.

Anon.

1.3 Polymorphism: values, operations, layouts

Kuiper inherits from F* and Pulse the support for polymor-
phism and typeclasses. The matrix multiplication above can
be defined generically over any “scalar” type. The scalar
typeclass is defined as such:

class scalar (t : Type) = {
[@@@superclass] is_sized : sized t;
zero : t; one : t;
add :t >t —> t; mul : t >t > t;
}

That is, a scalar type is one that has a staticly-known size, a
distinguished zero and one, and supports addition, multipli-
cation. Notably we do not require any properties over these
operations.

Also, one is usually interested in GEMMs (computing
C « aAB + SC for some scalars @ and f). To not dupli-
cate this implementation, we instead generalize it over some
comb function that indicates how to combine the previous
value in ¢ with the result of the multiplication. Choosing
comb old new = new gives the standard matrix multiplica-
tion, while comb old new = alpha * new + beta * oldgives
a GEMM.

As a further generalization, we can also abstract over the
in-memory representation of the matrices. The algorithm
is independent of concrete positions in memory and only
accesses individual cells of the matrix. We call layout the
way in which matrix cells map into the concrete array posi-
tions (essentially a bijection between Ny X N and N n).
The layouts encode how to index into the underlying array,
essentially providing accessor and setter functions. Given
any layout for each matrix of the matrices (which can be
different), the algorithms works the same, so we abstract
over it too.

The most generic type for this matmul becomes:

val mk_matmul_kdesc
(#et : Type) {| scalar et |}
(#la : mlayout et 'm 'k)
(#1b : mlayout et 'k 'n)
(#lc : mlayout et 'n 'k)
(comb : old:et — net:et — et)
(a : gpu_matrix et la)
(b : gpu_matrix et 1lb)
(c : gpu_matrix et lc)
(#va #vb #vc : _)
: kernel_desc (a+— va x b +— vb x ¢ — vc)
(a> vaxbtr vbxcr va X vb)

This kernel can be specialized to any scalar type, any comb
function, and any combination of layouts (e.g. row-major
inputs and column-major output). All the abstraction inlines
away and the generated code is fully specialized, without
any induced overhead. The verification is performed only
once at the most general level.

166
167

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

208
209
210
211
212
213
214
215
216
217
218
219
220

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

Kuiper: verified and efficient GPU programming

References

G. Ebner, G. Martinez, A. Rastogi, T. Dardinier, M. Frisella, T. Ramananandro,
and N. Swamy. PulseCore: An Impredicative Concurrent Separation
Logic for Dependently Typed Programs. 2025. To appear in PLDI 2025.

N. Swamy, C. Hritcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest,
K. Bhargavan, C. Fournet, P.-Y. Strub, M. Kohlweiss, J.-K. Zinzindohoué,
and S. Zanella-Béguelin. Dependent types and multi-monadic effects in
F*. POPL. 2016.

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

https://www.fstar-lang.org/papers/mumon/
https://www.fstar-lang.org/papers/mumon/

	Abstract
	1 Kuiper Basics
	1.1 Modes for distinguishing CPU and GPU code
	1.2 Kernel Descriptions and Kernel Calls
	1.3 Polymorphism: values, operations, layouts

	References

