
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Kuiper: verified and efficient GPU programming
Anonymous Author(s)

Abstract
Kuiper is a language for safe and verified GPU program-
ming based on dependent types and concurrent separation
logic. Kuiper models the intricacies of the GPU programming
model, including thememory hierarchy, kernel launches, and
synchronization within a single comprehensive framework.
Memory bugs and data races are ruled out for any well-typed
program. Optionally, full functional-correctness proofs can
be performed. Kuiper programs can be heavily polymorphic
(over types, operations, memory layout, and more) and ex-
tract to efficient, specialized CUDA code. We use Kuiper
to implement several common GPU kernels (matrix multi-
plication, reductions, softmax). Kuiper is built over the F★
[Swamy et al. 2016] ecosystem.

GPU kernels are delicate pieces of code, where possibilities
for errors (memory bugs, data races, synchronization bugs,
etc) abound. At the same time, performance is paramount,
and compromises between performance and ease of program-
ming will normally favor performance. There is a clear need
for safe, performant languages in this space.
Kuiper is a language aiming to provide both. It is embed-

ded in Pulse, a dependently-typed programming language
based on concurrent separation logic [Ebner et al. 2025], al-
lowing a high-degree of expresiveness and verification. All
Kuiper programs are free of memory bugs and data races by
construction. Kuiper also allows the programmer to write
heavily-optimized code, not imposing any significant con-
straints over CUDA. Optionally, Kuiper programs can be
verified for functional correctness.

Kuiper is a work in progress.

1 Kuiper Basics
Kuiper is built on top of Pulse, which is a dependently-
typed programming language based on concurrent sepa-
ration logic [Ebner et al. 2025]. Program specifications in-
clude pre- and postconditions stating precise ownership of
resources. For instance, the following program copies a ref-
erence s into another one t:

fn copy (t s : ref 𝛼)

preserves s ↦→ Frac 'f 'vs

requires t ↦→ 'vt

ensures t ↦→ 'vs {

let v = !s;

t ← v;

}

The function has several annotation clauses: preserves, requires,
and ensures. Multiple clauses of the same kind may be pro-
vided, in which case they are combined using ★, the sepa-
rating conjunction. The preserves clause is just a shortcut
for resources that appear unchanged in both the pre- and
postcondition. The ↦→ symbols read “points to” states that a
given reference is live and set to some particular value. The
precondition states that this functions requires ownership
over (some fraction of) s and p (fully). Requiring only a frac-
tion of “s” allows other threads to own other fractions of
“s” at the same time, and allows for read-only access to it.
The postcondition states that the value pointed to by s has
remained unchanged, and that ‘t‘ now points to the same
value as ‘s‘.

1.1 Modes for distinguishing CPU and GPU code
Tomodel device and host functions, Kuiper introduces “mode
resources”. Every host function (e.g. the main function) re-
quires a cpu resource, and every device function (e.g. kernels
and functions called by them) requires a gpu resource. Both
of these resources are kept abstract, so nothing can be done
with them, a priori, except for passing them around. Ev-
ery function returns their mode resource back to the caller.
Kuiper can be used both to write whole programs and mixed
CPU/GPU libraries. In the first case, a program starts owning
the cpu resource.

val cpu : slprop (* abstract *)

val gpu : slprop (* abstract *)

Here is the Kuiper signature of a function that allocates
an uninitialized array in GPU memory. It can only be called
from the host.

fn gpu_array_alloc0

(t : Type) {| sized t |} (len : nat)

preserves cpu

returns a : gpu_array t len

ensures ∃★ s. ga ↦→ s

The preserves here indicates that this function may only be
called when “owning” the CPUmode, which is returned back
to the caller. The function expects an element type t and a
length len. The {| sized t |} fragment is a typeclass con-
straint: arrays can only be created for types for which Kuiper
statically knows the size, to request the proper amount of
bytes to cudaMalloc. The function returns a new gpu_array

of the proper type and length. The postcondition states that
this array points to something, but makes no further guar-
antees about the contents. Kuiper provides types for device
memory data (gpu_ref, gpu_array, etc) in tandem with the
native Pulse counterparts (ref, array).

1

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Anon.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

1.2 Kernel Descriptions and Kernel Calls
So far, the use of cpu and gpu mode resources prevents any
kind of calls between different modes. Kuiper provides func-
tions that allow calling (“launching”) kernels from CPU code,
provided the proper conditions are met. The simplest version
is the following, which spawns one single thread in the GPU
executing some function k.

fn launch_kernel1
(k : unit → unit (requires gpu ★ 'pre)

(ensures gpu ★ 'post))

preserves cpu requires 'pre ensures 'post

The launch_kernel1 function can be called on any GPU func-
tion, provided it returns unit. The caller needs to provide
k’s precondition, and obtains back k’s postcondition. The
preserves guarantees this function can only be called from
the CPU, where the call can be properly configured (in the
case of CUDA, this would be something like k<<<1,1>>>).

For more realistic, parallel kernel calls, Kuiper provides a
record type for kernel descriptions (we elide the definition). A
value of this type specifies the kernel function to run, the grid
configuration, and any intermediate pre- and postconditions.

type kernel_desc (pre post : slprop) : Type

Once a record of this type is constructed, it can be launched
simply by calling the function below.

fn launch_kernel (k : kernel_desc 'pre 'post)

preserves cpu requires 'pre ensures 'post

Since the grid configuration is baked into the record, mis-
matches at the call are impossible.
For a given functionality in mind (e.g. multiplying two

matrices A and B into C), there will be a function to create a
kernel_desc that is specialized to exactly this taks which can
then be launched as-is, without providing extra arguments.
Roughly:

val mk_matmul_kdesc

(a : gpu_matrix f32 m k)

(b : gpu_matrix f32 k n)

(c : gpu_matrix f32 m n)

(#va #vb #vc : _)

: kernel_desc (a ↦→ va ★ b ↦→ vb ★ c ↦→ vc)

(a ↦→ va ★ b ↦→ vb ★ c ↦→ va × vb)

where f32 represent the float type, and × is the (mathemati-
cal, specification-level) matrix multiplication. We have im-
plemented several (verified) versions of such multiplcations.
We elide discussing them for size constraints, and instead
focus on polymorphism and specialization aspects.
This kernel can then be launched as-is, without specify-

ing a grid as it as already baked into the description. The
code generation process will partially evaluate the program,
removing all these indirections and ending up with a simple
kernel call, without overhead.

1.3 Polymorphism: values, operations, layouts
Kuiper inherits from F★ and Pulse the support for polymor-
phism and typeclasses. The matrix multiplication above can
be defined generically over any “scalar” type. The scalar
typeclass is defined as such:

class scalar (t : Type) = {

[@@@superclass] is_sized : sized t;

zero : t; one : t;

add : t → t → t; mul : t → t → t;

}

That is, a scalar type is one that has a staticly-known size, a
distinguished zero and one, and supports addition, multipli-
cation. Notably we do not require any properties over these
operations.
Also, one is usually interested in GEMMs (computing

𝐶 ← 𝛼𝐴𝐵 + 𝛽𝐶 for some scalars 𝛼 and 𝛽). To not dupli-
cate this implementation, we instead generalize it over some
comb function that indicates how to combine the previous
value in c with the result of the multiplication. Choosing
comb old new = new gives the standard matrix multiplica-
tion, while comb old new = alpha * new + beta * old gives
a GEMM.

As a further generalization, we can also abstract over the
in-memory representation of the matrices. The algorithm
is independent of concrete positions in memory and only
accesses individual cells of the matrix. We call layout the
way in which matrix cells map into the concrete array posi-
tions (essentially a bijection between N𝑀 × N𝑁 and N𝑀×𝑁).
The layouts encode how to index into the underlying array,
essentially providing accessor and setter functions. Given
any layout for each matrix of the matrices (which can be
different), the algorithms works the same, so we abstract
over it too.

The most generic type for this matmul becomes:

val mk_matmul_kdesc

(#et : Type) {| scalar et |}

(#la : mlayout et 'm 'k)

(#lb : mlayout et 'k 'n)

(#lc : mlayout et 'n 'k)

(comb : old:et → net:et → et)

(a : gpu_matrix et la)

(b : gpu_matrix et lb)

(c : gpu_matrix et lc)

(#va #vb #vc : _)

: kernel_desc (a ↦→ va ★ b ↦→ vb ★ c ↦→ vc)

(a ↦→ va ★ b ↦→ vb ★ c ↦→ va × vb)

This kernel can be specialized to any scalar type, any comb

function, and any combination of layouts (e.g. row-major
inputs and column-major output). All the abstraction inlines
away and the generated code is fully specialized, without
any induced overhead. The verification is performed only
once at the most general level.

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Kuiper: verified and efficient GPU programming

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

References
G. Ebner, G. Martínez, A. Rastogi, T. Dardinier, M. Frisella, T. Ramananandro,

and N. Swamy. PulseCore: An Impredicative Concurrent Separation
Logic for Dependently Typed Programs. 2025. To appear in PLDI 2025.

N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest,
K. Bhargavan, C. Fournet, P.-Y. Strub, M. Kohlweiss, J.-K. Zinzindohoué,
and S. Zanella-Béguelin. Dependent types and multi-monadic effects in
F*. POPL. 2016.

3

https://www.fstar-lang.org/papers/mumon/
https://www.fstar-lang.org/papers/mumon/

	Abstract
	1 Kuiper Basics
	1.1 Modes for distinguishing CPU and GPU code
	1.2 Kernel Descriptions and Kernel Calls
	1.3 Polymorphism: values, operations, layouts

	References

